Evolutionary Game Theory for Symmetric Games: Statics

Harry R. Lloyd, August 1, 2019

1 The Model

- Payoffs measure reproductive fitness
- Each player is programmes to follow a certain mode of behaviour (with high probability inherited from its parents)

2 Evolutionarily Stable Strategies

2.1 Rationale

 α^* is an ESS \Leftrightarrow mutants will be *driven out* of a population of α^* players ...

... for any sensible system of dynamics – i.e. any system of dynamics that favours high-payoff strategies

(... provided that only a small fraction of the population can mutate at once).

2.2 Definition

An evolutionarily stable strategy (ESS) in a symmetric two-player strategic game is a (possibly mixed) strategy α^* such that:

- 1. (α^*, α^*) is a Nash equilibrium, and
- 2. For every $\beta \neq \alpha^*$ that is a BR to α^* , α^* is a better response to β than β is to itself [i.e.: $U(\beta, \beta) < U(\alpha^*, \beta)$].

2.3 ESS and Strict NE

 (α^*, α^*) is a strict NE $\Rightarrow \alpha^*$ is an ESS

2.4 Finding ESS

Procedure: For each α^* such that (α^*, α^*) is a Nash equilibrium:

- 1. let β = the *arbitrary* mixed strategy ($p_1, p_2, ...$) over the action space;
- 2. assume that $U(\beta, \beta) \ge U(\alpha^*, \beta)$;
- 3. you will either (i) isolate a set of counterexamples to α^* being an ESS, or (ii) show that $\beta = \alpha^*$, and thus that α^* *is* an ESS.